Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.630
Filtrar
1.
Nat Commun ; 15(1): 3080, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594251

RESUMO

Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Estruturas R-Loop , Animais , Humanos , Camundongos , RNA Helicases DEAD-box/metabolismo , Células Epiteliais/metabolismo , Homeostase , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Celulas de Paneth/metabolismo , Células-Tronco/metabolismo
2.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38536035

RESUMO

Stress granules and P-bodies are ribonucleoprotein (RNP) granules that accumulate during the stress response due to the condensation of untranslating mRNPs. Stress granules form in part by intermolecular RNA-RNA interactions and can be limited by components of the RNA chaperone network, which inhibits RNA-driven aggregation. Herein, we demonstrate that the DEAD-box helicase DDX6, a P-body component, can also limit the formation of stress granules, independent of the formation of P-bodies. In an ATPase, RNA-binding dependent manner, DDX6 limits the partitioning of itself and other RNPs into stress granules. When P-bodies are limited, proteins that normally partition between stress granules and P-bodies show increased accumulation within stress granules. Moreover, we show that loss of DDX6, 4E-T, and DCP1A increases P-body docking with stress granules, which depends on CNOT1 and PAT1B. Taken together, these observations identify a new role for DDX6 in limiting stress granules and demonstrate that P-body components can influence stress granule composition and docking with P-bodies.


Assuntos
RNA Helicases DEAD-box , Corpos de Processamento , Grânulos de Estresse , Adenosina Trifosfatases , Corpos de Processamento/química , Corpos de Processamento/metabolismo , RNA , Grânulos de Estresse/química , Grânulos de Estresse/metabolismo , Humanos , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo
3.
Virol J ; 21(1): 76, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553727

RESUMO

BACKGROUND: RNA helicases are emerging as key factors regulating host-virus interactions. The DEAD-box ATP-dependent RNA helicase DDX5, which plays an important role in many aspects of cellular RNA biology, was also found to either promote or inhibit viral replication upon infection with several RNA viruses. Here, our aim is to examine the impact of DDX5 on Sindbis virus (SINV) infection. METHODS: We analysed the interaction between DDX5 and the viral RNA using imaging and RNA-immunoprecipitation approaches. The interactome of DDX5 in mock- and SINV-infected cells was determined by mass spectrometry. We validated the interaction between DDX17 and the viral capsid by co- immunoprecipitation in the presence or absence of an RNase treatment. We determined the subcellular localization of DDX5, its cofactor DDX17 and the viral capsid protein by co-immunofluorescence. Finally, we investigated the impact of DDX5 depletion and overexpression on SINV infection at the viral protein, RNA and infectious particle accumulation level. The contribution of DDX17 was also tested by knockdown experiments. RESULTS: In this study we demonstrate that DDX5 interacts with the SINV RNA during infection. Furthermore, the proteomic analysis of the DDX5 interactome in mock and SINV-infected HCT116 cells identified new cellular and viral partners and confirmed the interaction between DDX5 and DDX17. Both DDX5 and DDX17 re-localize from the nucleus to the cytoplasm upon SINV infection and interact with the viral capsid protein. We also show that DDX5 depletion negatively impacts the viral replication cycle, while its overexpression has a pro-viral effect. Finally, we observed that DDX17 depletion reduces SINV infection, an effect which is even more pronounced in a DDX5-depleted background, suggesting a synergistic pro-viral effect of the DDX5 and DDX17 proteins on SINV. CONCLUSIONS: These results not only shed light on DDX5 as a novel and important host factor to the SINV life cycle, but also expand our understanding of the roles played by DDX5 and DDX17 as regulators of viral infections.


Assuntos
Infecções por Alphavirus , Proteínas do Capsídeo , Humanos , Proteômica , Replicação Viral , RNA , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Vírus Sindbis/metabolismo
4.
Cancer Res Commun ; 4(4): 986-1003, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530197

RESUMO

Detection of viral double-stranded RNA (dsRNA) is an important component of innate immunity. However, many endogenous RNAs containing double-stranded regions can be misrecognized and activate innate immunity. The IFN-inducible ADAR1-p150 suppresses dsRNA sensing, an essential function for adenosine deaminase acting on RNA 1 (ADAR1) in many cancers, including breast. Although ADAR1-p150 has been well established in this role, the functions of the constitutively expressed ADAR1-p110 isoform are less understood. We used proximity labeling to identify putative ADAR1-p110-interacting proteins in breast cancer cell lines. Of the proteins identified, the RNA helicase DHX9 was of particular interest. Knockdown of DHX9 in ADAR1-dependent cell lines caused cell death and activation of the dsRNA sensor PKR. In ADAR1-independent cell lines, combined knockdown of DHX9 and ADAR1, but neither alone, caused activation of multiple dsRNA sensing pathways leading to a viral mimicry phenotype. Together, these results reveal an important role for DHX9 in suppressing dsRNA sensing by multiple pathways. SIGNIFICANCE: These findings implicate DHX9 as a suppressor of dsRNA sensing. In some cell lines, loss of DHX9 alone is sufficient to cause activation of dsRNA sensing pathways, while in other cell lines DHX9 functions redundantly with ADAR1 to suppress pathway activation.


Assuntos
Adenosina Desaminase , Neoplasias da Mama , RNA Helicases DEAD-box , Proteínas de Neoplasias , Proteínas de Ligação a RNA , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA de Cadeia Dupla/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral
5.
Front Immunol ; 15: 1349601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487540

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic islet ß-cells are attacked by the immune system, resulting in insulin deficiency and hyperglycemia. One of the top non-synonymous single-nucleotide polymorphisms (SNP) associated with T1D is in the interferon-induced helicase C domain-containing protein 1 (IFIH1), which encodes an anti-viral cytosolic RNA sensor. This SNP results in an alanine to threonine substitution at amino acid 946 (IFIH1A946T) and confers an increased risk for several autoimmune diseases, including T1D. We hypothesized that the IFIH1A946T risk variant, (IFIH1R) would promote T1D pathogenesis by stimulating type I interferon (IFN I) signaling leading to immune cell alterations. To test this, we developed Ifih1R knock-in mice on the non-obese diabetic (NOD) mouse background, a spontaneous T1D model. Our results revealed a modest increase in diabetes incidence and insulitis in Ifih1R compared to non-risk Ifih1 (Ifih1NR) mice and a significant acceleration of diabetes onset in Ifih1R females. Ifih1R mice exhibited a significantly enhanced interferon stimulated gene (ISG) signature compared to Ifih1NR, indicative of increased IFN I signaling. Ifih1R mice exhibited an increased frequency of plasma cells as well as tissue-dependent changes in the frequency and activation of CD8+ T cells. Our results indicate that IFIH1R may contribute to T1D pathogenesis by altering the frequency and activation of immune cells. These findings advance our knowledge on the connection between the rs1990760 variant and T1D. Further, these data are the first to demonstrate effects of Ifih1R in NOD mice, which will be important to consider for the development of therapeutics for T1D.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Feminino , Animais , Camundongos , Helicase IFIH1 Induzida por Interferon/genética , RNA Helicases DEAD-box/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Predisposição Genética para Doença , Camundongos Endogâmicos NOD , Doenças Autoimunes/genética , Interferons/genética
6.
FASEB J ; 38(7): e23581, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38551642

RESUMO

Human DEAD/H box RNA helicase DDX6 acts as an oncogene in several different types of cancer, where it participates in RNA processing. Nevertheless, the role of DDX6 in pancreatic cancer (PC), together with the underlying mechanism, has yet to be fully elucidated. In the present study, compared with adjacent tissues, the level of DDX6 was abnormally increased in human PC tissues, and this increased level of expression was associated with poor prognosis. Furthermore, the role of DDX6 in PC was investigated by overexpressing or silencing the DDX6 in the PC cell lines, SW1990 and PaTu-8988t. A xenograft model was established by injecting nude mice with either DDX6-overexpressing or DDX6-silenced SW1990 cells. DDX6 overexpression promoted the proliferation and cell cycle transition, inhibited the cell apoptosis of PC cells, and accelerated tumor formation, whereas DDX6 knockdown elicited the opposite effects. DDX6 exerted positive effects on PC. RNA immunoprecipitation assay showed that DDX6 bound to kinesin family member C1 (KIFC1) mRNA, which was further confirmed by RNA pull-down assay. These results suggested that DDX6 positively regulated the expression of KIFC1. KIFC1 overexpression enhanced the proliferative capability of PC cells with DDX6 knockdown and inhibited their apoptosis. By contrast, DDX6 overexpression reversed the inhibitory effect of KIFC1 silencing on tumor proliferation. Subsequently, the transcription factor Yin Yang 1 (YY1) was shown to negatively regulate DDX6 at both the mRNA and protein levels. Dual-luciferase reporter assay verified that YY1 targeted the promoter of DDX6 and inhibited its transcription. High expression levels of YY1 decreased the proliferation of PC cells and promoted cell apoptosis, although these effects were reversed by DDX6 overexpression. Taken together, YY1 may target the DDX6/KIFC1 axis, thereby negatively regulating its expression, leading to an inhibitory effect on pancreatic tumor.


Assuntos
RNA Helicases DEAD-box , MicroRNAs , Neoplasias Pancreáticas , Fator de Transcrição YY1 , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , MicroRNAs/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
7.
Sci Total Environ ; 923: 171349, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438030

RESUMO

Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Benzo(a)pireno/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Células Epiteliais , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/farmacologia , Retroalimentação , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
8.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499487

RESUMO

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Assuntos
RNA Helicases DEAD-box , Fatores de Processamento de RNA , RNA Nuclear Pequeno , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Humanos , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/química , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Splicing de RNA , Íntrons/genética , Células HeLa , Ligação Proteica , Corpos Enovelados/metabolismo , Células HEK293
9.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339029

RESUMO

G-quadruplexes (G4s) are secondary DNA and RNA structures stabilized by positive cations in a central channel formed by stacked tetrads of Hoogsteen base-paired guanines. G4s form from G-rich sequences across the genome, whose biased distribution in regulatory regions points towards a gene-regulatory role. G4s can themselves be regulated by helicases, such as DHX36 (aliases: G4R1 and RHAU), which possess the necessary activity to resolve these stable structures. G4s have been shown to both positively and negatively regulate gene expression when stabilized by ligands, or through the loss of helicase activity. Using DHX36 knockout Jurkat cell lines, we identified widespread, although often subtle, effects on gene expression that are associated with the presence or number of observed G-quadruplexes in promoters or gene regions. Genes that significantly change their expression, particularly those that show a significant increase in RNA abundance under DHX36 knockout, are associated with a range of cellular functions and processes, including numerous transcription factors and oncogenes, and are linked to several cancers. Our work highlights the direct and indirect role of DHX36 in the transcriptome of T-lymphocyte leukemia cells and the potential for DHX36 dysregulation in cancer.


Assuntos
RNA Helicases DEAD-box , Quadruplex G , Neoplasias , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Expressão Gênica , RNA/metabolismo , Células Jurkat/metabolismo
10.
Cancer Lett ; 588: 216746, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38387756

RESUMO

Helicobacter pylori (H. pylori) infection is considered to be an important factor in gastric cancer (GC). Long noncoding RNA (lncRNA) and m6A modification are involved in the occurrence and development of GC, but the role of lncRNA m6A modification in the development of GC mediated by H. pylori is still unclear. Here, we found that H. pylori infection downregulated the expression of lnc-PLCB1 through METTL14-mediated m6A modification and IRF2-mediated transcriptional regulation. Overexpression of lnc-PLCB1 inhibited the proliferation and migration of GC cells, while downregulation of lnc-PLCB1 promoted the proliferation and migration ability of GC cells. In addition, clinical analysis showed that lnc-PLCB1 is lower in GC tissues than in normal tissues. Further study found that lnc-PLCB1 reduced the protein stability of its binding protein DEAD-box helicase 21 (DDX21) and then downregulated the expression of CCND1 and Slug, thereby playing tumour suppressing role in the occurrence and development of GC. In conclusion, the METTL14/lnc-PLCB1/DDX21 axis plays an important role in H. pylori-mediated GC, and lnc-PLCB1 can be used as a new target for GC treatment.


Assuntos
Adenina , Infecções por Helicobacter , Helicobacter pylori , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Regulação para Baixo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
11.
Clin Transl Med ; 14(2): e1529, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303609

RESUMO

OBJECTIVE: Our study was to elucidate the role of RNA helicase DEAD-Box Helicase 17 (DDX17) in NAFLD and to explore its underlying mechanisms. METHODS: We created hepatocyte-specific Ddx17-deficient mice aim to investigate the impact of Ddx17 on NAFLD induced by a high-fat diet (HFD) as well as methionine and choline-deficient l-amino acid diet (MCD) in adult male mice. RNA-seq and lipidomic analyses were conducted to depict the metabolic landscape, and CUT&Tag combined with chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted. RESULTS: In this work, we observed a notable increase in DDX17 expression in the livers of patients with NASH and in murine models of NASH induced by HFD or MCD. After introducing lentiviruses into hepatocyte L02 for DDX17 knockdown or overexpression, we found that lipid accumulation induced by palmitic acid/oleic acid (PAOA) in L02 cells was noticeably weakened by DDX17 knockdown but augmented by DDX17 overexpression. Furthermore, hepatocyte-specific DDX17 knockout significantly alleviated hepatic steatosis, inflammatory response and fibrosis in mice after the administration of MCD and HFD. Mechanistically, our analysis of RNA-seq and CUT&Tag results combined with ChIP and luciferase reporter assays indicated that DDX17 transcriptionally represses Cyp2c29 gene expression by cooperating with CCCTC binding factor (CTCF) and DEAD-Box Helicase 5 (DDX5). Using absolute quantitative lipidomics analysis, we identified a hepatocyte-specific DDX17 deficiency that decreased lipid accumulation and altered lipid composition in the livers of mice after MCD administration. Based on the RNA-seq analysis, our findings suggest that DDX17 could potentially have an impact on the modulation of lipid metabolism and the activation of M1 macrophages in murine NASH models. CONCLUSION: These results imply that DDX17 is involved in NASH development by promoting lipid accumulation in hepatocytes, inducing the activation of M1 macrophages, subsequent inflammatory responses and fibrosis through the transcriptional repression of Cyp2c29 in mice. Therefore, DDX17 holds promise as a potential drug target for the treatment of NASH.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fibrose , Expressão Gênica , Metabolismo dos Lipídeos/genética , Transtornos do Metabolismo dos Lipídeos/genética , Lipídeos , Luciferases/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Progressão da Doença
12.
Environ Toxicol ; 39(5): 3026-3039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317508

RESUMO

Long noncoding RNAs have been reported to be involved in the development of breast cancer. LINC01572 was previously reported to promote the development of various tumors. However, the potential biological function of LINC01572 in breast cancer remains largely unknown. R language was used to perform bioinformatic analysis of The Cancer Genome Atlas data. The expression level of RNAs was examined by RT-qPCR. The effect of knocking down or overexpression LINC01572 in triple-negative breast cancer (TNBC) cell lines was evaluated by detecting cell proliferation, migrant action. RNA immunoprecipitation assay and RNA pull-down assay were performed to explore the regulatory relationship between LINC01572, EIF4A3, and ß-catenin. Bioinformatics analysis identifies LINC01572 as an oncogene of breast cancer. LINC01572 is over-expressed in TNBC tissues and cell lines, correlated with poor clinical prognosis in BC patients. Cell function studies confirmed that LINC01572 facilitated the proliferation and migration of TNBC cells in both vivo and vitro. Mechanistically, ß-catenin mRNA and EIF4A3 combine spatially to form a complex, LINC01572 helps transport this complex from the nucleus to the cytoplasm, thereby facilitating the translation of ß-catenin. Our findings confirm that LINC01572 acts as a tumor promoter and may act as a biomarker in TNBC. In addition, novel molecular regulatory relationships involving LINC01572/EIF4A3/ß-catenin are critical to the development of TNBC, which led to a new understanding of the mechanisms of TNBC progression and shows a new target for precision treatment for TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias de Mama Triplo Negativas/genética , RNA Mensageiro/genética , Linhagem Celular Tumoral , RNA , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
13.
Sci Total Environ ; 922: 171237, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423337

RESUMO

Arsenic (As), a common environmental pollutant, has become a hot topic in recent years due to its potentially harmful effects. Liver damage being a central clinical feature of chronic arsenic poisoning. However, the underlying mechanisms remain unclear. We demonstrated that arsenic can lead to oxidative stress in the liver and result in structural and functional liver damage, significantly correlated with the expression of AUF1, Dicer1, and miR-155 in the liver. Interestingly, knockdown AUF1 promoted the up-regulatory effects of arsenic on Dicer1 and miR-155 and the inhibitory effects on SOD1, which exacerbated oxidative damage in rat liver. However, overexpression of AUF1 reversed the up-regulatory effects of arsenic on Dicer1 and miR-155, restored arsenic-induced SOD1 depletion, and attenuated liver oxidative stress injury. Further, we verified the mechanism and targets of miR-155 in regulating SOD1 by knockdown/overexpression of miR-155 and nonsense mutant SOD1 3'UTR experiments. In conclusion, these results powerfully demonstrate that arsenic inhibits AUF1 protein expression, which in turn reduces the inhibitory effect on Dicer1 expression, which promotes miR-155 to act on the SOD1 3'UTR region after high expression, thus inhibiting SOD1 protein expression and enzyme activity, and inducing liver injury. This finding provides a new perspective for the mechanism research and targeted prevention of arsenic poisoning, as well as scientific evidence for formulating strategies to prevent and control environmental arsenic pollution.


Assuntos
Intoxicação por Arsênico , Arsênio , Fígado , MicroRNAs , Animais , Ratos , Regiões 3' não Traduzidas , Arsênio/toxicidade , Intoxicação por Arsênico/prevenção & controle , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribonuclease III/farmacologia , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia
14.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38418220

RESUMO

The conformational state of DNA fine-tunes the transcriptional rate and abundance of RNA. Here, we report that G-quadruplex DNA (G4-DNA) accumulates in neurons, in an experience-dependent manner, and that this is required for the transient silencing and activation of genes that are critically involved in learning and memory in male C57/BL6 mice. In addition, site-specific resolution of G4-DNA by dCas9-mediated deposition of the helicase DHX36 impairs fear extinction memory. Dynamic DNA structure states therefore represent a key molecular mechanism underlying memory consolidation.One-Sentence Summary: G4-DNA is a molecular switch that enables the temporal regulation of the gene expression underlying the formation of fear extinction memory.


Assuntos
Quadruplex G , Masculino , Animais , Camundongos , Extinção Psicológica , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Medo , DNA/metabolismo
15.
J Biol Chem ; 300(3): 105711, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309507

RESUMO

Cytosolic long dsRNA, among the most potent proinflammatory signals, is recognized by melanoma differentiation-associated protein 5 (MDA5). MDA5 binds dsRNA cooperatively forming helical filaments. ATP hydrolysis by MDA5 fulfills a proofreading function by promoting dissociation of shorter endogenous dsRNs from MDA5 while allowing longer viral dsRNAs to remain bound leading to activation of interferon-ß responses. Here, we show that adjacent MDA5 subunits in MDA5-dsRNA filaments hydrolyze ATP cooperatively, inducing cooperative filament disassembly. Consecutive rounds of ATP hydrolysis amplify the filament footprint, displacing tightly bound proteins from dsRNA. Our electron microscopy and biochemical assays show that LGP2 binds to dsRNA at internal binding sites through noncooperative ATP hydrolysis. Unlike MDA5, LGP2 has low nucleic acid selectivity and can hydrolyze GTP and CTP as well as ATP. Binding of LGP2 to dsRNA promotes nucleation of MDA5 filament assembly resulting in shorter filaments. Molecular modeling identifies an internally bound MDA5-LGP2-RNA complex, with the LGP2 C-terminal tail forming the key contacts with MDA5. These contacts are specifically required for NTP-dependent internal RNA binding. We conclude that NTPase-dependent binding of LGP2 to internal dsRNA sites complements NTPase-independent binding to dsRNA ends, via distinct binding modes, to increase the number and signaling output of MDA5-dsRNA complexes.


Assuntos
RNA Helicases DEAD-box , Helicase IFIH1 Induzida por Interferon , RNA Helicases , RNA de Cadeia Dupla , RNA Viral , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/metabolismo , Hidrólise , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Nucleosídeo-Trifosfatase/genética , Nucleosídeo-Trifosfatase/metabolismo , RNA Helicases/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos
16.
Life Sci ; 340: 122479, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301874

RESUMO

THE HEADINGS AIMS: DEAD-box helicase 27 (DDX27), a member of the DEAD-Box nucleic acid helicase family, holds an elusive role in oral squamous cell carcinoma (OSCC). This study aims to unravel the regulatory functions of DDX27 in OSCC and explore its downstream targets. MATERIALS AND METHODS: A commercial oral squamous cell carcinoma (OSCC) tissue microarray (TMA) was utilized. We analyzed differentially expressed genes in OSCC through the GEO database. Target gene silencing was achieved using the shRNA-mediated lentivirus method. Coexpedia analysis identified co-expressed genes associated with DDX27. Additionally, a Co-Immunoprecipitation (Co-IP) experiment confirmed the protein interaction between DDX27 and CSE1L. Xenograft tumor models were employed to evaluate DDX27's role in OSCC tumor formation. KEY FINDINGS: Elevated DDX27 expression in OSCC correlated with a higher pathological grade. DDX27 knockdown resulted in decreased cell proliferation, increased apoptosis, inhibited cell migration, and induced G2/M phase cell cycle arrest, as well as impaired tumor outgrowth. Coexpedia analysis identified STAU1, NELFCD, and CSE1L as top co-expressed genes. Lentiviral vectors targeting STAU1, NELFCD, and CSE1L revealed that silencing CSE1L significantly impaired cell growth, indicating it as a downstream target of DDX27. Cell rescue experiments demonstrated that increased DDX27 levels ameliorated cell proliferation, attenuated apoptosis, and CSE1L depletion blocked cell development induced by DDX27 overexpression. SIGNIFICANCES: This study highlighted DDX27 as a potential therapeutic target for OSCC treatment, shedding light on its crucial role in OSCC development. Targeting DDX27 or its downstream effector, CSE1L, holds promise for innovative OSCC therapies.


Assuntos
Carcinoma de Células Escamosas , Proteína de Suscetibilidade a Apoptose Celular , RNA Helicases DEAD-box , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas do Citoesqueleto/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Bucais/patologia , Proteínas de Ligação a RNA/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/metabolismo , Proteína de Suscetibilidade a Apoptose Celular/metabolismo
17.
Biochem Soc Trans ; 52(1): 395-405, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38348889

RESUMO

DDX41 is a DEAD-box helicase and is conserved across species. Mutations in DDX41 have been associated with myeloid neoplasms, including myelodysplastic syndrome and acute myeloid leukemia. Though its pathogenesis is not completely known, DDX41 has been shown to have many cellular roles, including in pre-mRNA splicing, innate immune sensing, ribosome biogenesis, translational regulation, and R-loop metabolism. In this review, we will summarize the latest understandings regarding the various roles of DDX41, as well as highlight challenges associated with drug development to target DDX41. Overall, understanding the molecular and cellular mechanisms of DDX41 could help develop novel therapeutic options for DDX41 mutation-related hematologic malignancies.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Síndromes Mielodisplásicas/genética , Mutação
18.
Biochem Biophys Res Commun ; 703: 149682, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38377942

RESUMO

UAP56 and URH49 are closely related RNA helicases that function in selective mRNA processing and export pathways to fine-tune gene expression through distinct complex formations. The complex formation of UAP56 and URH49 is believed to play a crucial role in regulating target mRNAs. However, the mechanisms underlying this complex formation have not been fully elucidated. Here we identified the regions essential for the complex formation of both helicases. The terminal regions of UAP56 and the C-terminal region of URH49 were indispensable for their respective complex formation. Further analysis revealed that a specific amino acid at the C-terminus of UAP56 is critical for its complex formation. Alanine substitution of this amino acid impairs its complex formation and subsequently affected its mRNA processing and export activity. Our study provides a deeper understanding of the basis for the complex formation between UAP56 and URH49.


Assuntos
RNA Helicases DEAD-box , RNA Helicases , Processamento Pós-Transcricional do RNA , Aminoácidos/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , RNA Helicases/química , RNA Helicases/metabolismo
19.
Biochem Biophys Res Commun ; 703: 149666, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38377944

RESUMO

The IL-6 amplifier was originally discovered as a mechanism for the enhanced activation of NF-κB in non-immune cells. In the IL-6 amplifier, IL-6-STAT3 and NF-κB stimulation is followed by an excessive production of IL-6, chemokines, and growth factors to develop chronic inflammation preceding the development of inflammatory diseases. Previously, using a shRNA-mediated genome-wide screening, we found that DEAD-Box Helicase 6 (DDX6) is a candidate positive regulator of the amplifier. Here, we investigate whether DDX6 is involved in the pathogenesis of inflammatory diseases via the IL-6 amplifier. We found that DDX6-silencing in non-immune cells suppressed the NF-κB pathway and inhibited activation of the IL-6 amplifier, while the forced expression of DDX6 enhanced NF-κB promoter activity independent of the RNA helicase activity of DDX6. The imiquimod-mediated dermatitis model was suppressed by the siRNA-mediated gene downregulation of DDX6. Furthermore, silencing DDX6 significantly reduced the TNF-α-induced phosphorylation of p65/RelA and IκBα, nuclear localization of p65, and the protein levels of IκBα. Mechanistically, DDX6 is strongly associated with p65 and IκBα, but not TRADD, RIP, or TRAF2, suggesting a novel function of DDX6 as an adaptor protein in the NF-κB pathway. Thus, our findings demonstrate a possible role of DDX6 beyond RNA metabolism and suggest DDX6 is a therapeutic target for inflammatory diseases.


Assuntos
RNA Helicases DEAD-box , NF-kappa B , Regulação da Expressão Gênica , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , RNA Helicases DEAD-box/metabolismo
20.
RNA ; 30(4): 404-417, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38282418

RESUMO

RNA helicases drive necessary rearrangements and ensure fidelity during the pre-mRNA splicing cycle. DEAD-box helicase DDX41 has been linked to human disease and has recently been shown to interact with DEAH-box helicase PRP22 in the spliceosomal C* complex, yet its function in splicing remains unknown. Depletion of DDX41 homolog SACY-1 from somatic cells has been previously shown to lead to changes in alternative 3' splice site (3'ss) usage. Here, we show by transcriptomic analysis of published and novel data sets that SACY-1 perturbation causes a previously unreported pattern in alternative 3' splicing in introns with pairs of 3' splice sites ≤18 nt away from each other. We find that both SACY-1 depletion and the allele sacy-1(G533R) lead to a striking unidirectional increase in the usage of the proximal (upstream) 3'ss. We previously discovered a similar alternative splicing pattern between germline tissue and somatic tissue, in which there is a unidirectional increase in proximal 3'ss usage in the germline for ∼200 events; many of the somatic SACY-1 alternative 3' splicing events overlap with these developmentally regulated events. We generated targeted mutant alleles of the Caenorhabditis elegans homolog of PRP22, mog-5, in the region of MOG-5 that is predicted to interact with SACY-1 based on the human C* structure. These viable alleles, and a mimic of the myelodysplastic syndrome-associated allele DDX41(R525H), all promote the usage of proximal alternative adjacent 3' splice sites. We show that PRP22/MOG-5 and DDX41/SACY-1 have overlapping roles in proofreading the 3'ss.


Assuntos
Sítios de Splice de RNA , Spliceossomos , Humanos , Sítios de Splice de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Splicing de RNA , Processamento Alternativo , RNA Helicases/genética , RNA Helicases/metabolismo , DNA Helicases/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...